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Abstract—Crowdsensing Data Trading (CDT), through which
a platform can aggregate some data collected by a group of
mobile users with sensing devices (a.k.a., data sellers) and sell the
corresponding statistics to data consumers, has been recognized
as a promising paradigm for large-scale data trading in recent
years. It is critical to select sellers with high sensing qualities
and maximize all trading participants’ profits simultaneously.
However, most existing CDT systems either assume that sell-
ers’ sensing qualities are known in advance or cannot realize
concurrent profit maximization. In this paper, we propose a data
trading mechanism based on Combinatorial Multi-Armed Bandit
and three-stage Hierarchical Stackelberg game, called CMAB-
HS, to tackle the problem of quality unknown seller selection
and incentive strategy design. Our objective is to select a group
of sellers to maximize the total sensing quality within time budget,
and determine the optimal incentive strategy for each participant
to maximize individual profit simultaneously. We theoretically
prove that CMAB-HS achieves Stackelberg Equilibrium and a
tight bound on regret. Additionally, we demonstrate its significant
performances through extensive simulations on real data traces.

Index Terms—Crowdsensing data trading, Combinatorial
multi-armed bandits, Stackelberg game, Online learning

I. INTRODUCTION

DUe to the research and analysis purposes, businesses and
individuals have an increasing data demands and consid-

er to purchase data from some data trading systems. However,
most of the systems cannot offer appropriate data required
by data consumers. To tackle the dilemma in data trading,
some data trading systems (e.g., Thingful [1], Thingspeak
[2]) consider to adopt Mobile CrowdSensing [3], in which
a crowd of mobile users are recruited to collect location-
sensitive data with their carried smart devices when they visit
some pre-designated places. This data trading scheme is also
called Crowdsensing Data Trading (CDT), which has greater
advantages than traditional data trading for collecting data with
economic value distributed in a broad-scale area by leveraging
users’ mobility and diverse sensing devices.

A typical CDT system consists of three parties: a platform
working as the data trading broker, some data sellers, and
some data consumers, as shown in Fig. 1. The platform can
select some sellers to collect data from the specific Point of
Interests (PoIs) assigned by consumers, where collecting data
is also called sensing. Besides the data collection service,

Fig. 1: The crowsensing data trading system
the platform can provide data aggregation service for some
consumers who prefer to purchase the data statistics rather
than the original chaotic data, because the consumers may not
be able to analyze the massive data by themselves.

Since the valuation of collected data and statistics is posi-
tively correlated to the sellers’ sensing qualities, it is critical to
select a group of sellers with the highest qualities. However,
most existing CDT systems either do not consider sellers’
qualities or assume the quality information to be known in
advance. For example, the CDT systems proposed in [4]–
[8] select sellers based on cost with no regard of quality. [9]
and [10] deem the sellers’ qualities as known and unchanged
information in off-line CDT systems. [11] proposes a quality-
aware online CDT system which updates sellers’ qualities
according to the collected data, but the initial qualities are
also assumed to be known. Actually, it is very challenging to
acquire sellers’ sensing qualities in practice, so that we need
to tackle the seller selection problem with unknown qualities.

On the other hand, collecting data will inevitably incur some
costs due to the usage of sensing devices, so the CDT system
needs to provide adequate monetary rewards to incentivize
participants to take part in the data trading. Actually, many
incentive mechanisms have been proposed, especially for
crowdsensing systems. These works take various design goals
into consideration, such as social welfare maximization [5],
[9], cost minimization [4], [12], and quality maximization [6],
[11], etc. Most of these state-of-the-art works only involve
two parties (i.e., the platform and data sellers). Even though
the works in [8], [13] consider data trading among three
parties, they still separate it into two types of double-side
data trading. However, a CDT system generally involves three
parties, each of which might affect the other two parties. These
traditional incentive mechanisms, which only deal with the
trading between two parties, cannot work well in real CDT
systems. Thus, it is necessary to design incentive mechanisms
that can balance the profits of all participants.
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In this paper, we focus on the CDT system design with the
above-mentioned concerns, including two major challenges.
The first is how to select a group of sellers to obtain the data
collection qualities as high as possible under the circumstance
that the sensing qualities of all sellers are unknown. In order
to select appropriate sellers, the platform in CDT needs to
divide the data collection into multiple rounds and learn the
knowledge of sellers’ qualities round by round on one hand
(so-called exploration). On the other hand, the platform might
also exploit learnt knowledge to select best ones among known
sellers (so-called exploitation). This is actually an online
learning and decision-making process. We need to design a
mechanism to balance the exploration and exploitation well, so
as to maximize the total sensing quality. The second challenge
is how to design an incentive mechanism and derive the
optimal incentive strategy to maximize each participant’s profit
simultaneously. Meanwhile, it also needs to guarantee that no
one can improve its profit by deviating from the strategy.

Example: A data consumer wants to purchase the long-term
image data about some PoIs distributed in a large-scale region
via a CDT system (e.g., for machine learning model training,
environment monitoring, etc.). Then, the CDT system recruits
some sellers to collect the data by taking pictures around
these PoIs within a time duration and aggregates them for
the consumer. The system might not be familiar with these
sellers, so that their sensing qualities are unknown. To achieve
sufficient qualities, the system needs to incentivize sellers to
participate in the data collection by providing some rewards.

To address the above challenges, we propose a data trad-
ing mechanism based on Combinatorial Multi-Armed Bandit
(CMAB) and Hierarchical Stackelberg (HS) game, called
CMAB-HS. First, we model the seller selection with unknown
sensing quality as a CMAB problem by regarding each seller
as a CMAB arm and the sensing quality as the corresponding
revenue. The seller selection is thus formulated as the problem
of determining a combinatorial arm-pulling policy. Then, we
extend the classical concept of Upper Confidence Bound
(UCB) to our CMAB scenario, and design a UCB-based
greedy policy to solve the seller selection problem. Also, we
model the problem of finding optimal incentive strategy as a
three-stage HS game by regarding the consumer as the first
tier leader, the platform as the second tier leader, and sellers
as the followers. Through a backward deduction approach, we
derive an optimal incentive strategy, which constitutes a unique
Stackelberg Equilibrium (SE). Overall, the major contributions
are summarized as follows:

1) We propose a data trading mechanism based on CMAB
and three-stage HS game, namely CMAB-HS. To the
best of our knowledge, this is the first work that com-
bines CMAB and HS to solve the quality unknown
seller selection and the optimal incentive strategy design
problems in CDT systems.

2) We design a UCB-based greedy algorithm to select
unknown sellers, whereby CMAB-HS can maximize the
total quality revenue as much as possible. Moreover, we
analyze the online performance of CMAB-HS and derive

a tight upper bound on the expected regret.
3) We design an incentive mechanism based on three-

stage HS game and derive an optimal incentive strategy,
whereby each participant can maximize its profit. This
optimal strategy constitutes a unique SE, so that no one
can improve its profit by deviating from this strategy.

4) We conduct extensive simulations on real data traces to
demonstrate the performance of CMAB-HS.

The remainder of the paper is organized as follows. In Sec.
II, we introduce the system modeling and the problem formu-
lation. The detailed design and theoretical analysis of CMAB-
HS are elaborated in Sec. III and Sec. IV. The simulations
and evaluations are presented in Sec. V. We review the related
works in Sec. VI, and conclude the paper in Sec. VII.

II. SYSTEM OVERVIEW, MODELING, AND PROBLEMS

A. System Overview

We consider a CDT system, which is composed of a
platform, some data consumers, and a crowd of unknown data
sellers. A consumer can purchase data statistics from the CDT
system by recruiting some sellers to collect the raw sensing
data (e.g., traffic, noise, air quality data, etc) in an urban area
periodically before a deadline. The consumer, the platform,
and unknown sellers are defined as follows:

Definition 1 (Consumer, Job, and Round). The consumer
is a data service requester who wants to buy the statistics
on some location-sensitive data. The data can be obtained by
a long-term data collection job Job

def
= ⟨L, N, T,Des⟩, where

L={1, 2, · · · , L} includes L PoIs in an urban area and Des

describes the requirements for collected data and aggregated
statistics. The data collection job is divided into N rounds,
denoted by t∈{1, 2, · · · , N}, each of which lasts for a duration
of T . That is, the whole duration of data trading is NT .

Definition 2 (Platform). The platform acts as a data trading
broker in the CDT system. It receives the data service request
from the consumer, selects some data sellers to collect raw
data, aggregates these collected data, and provides the statistics
to the consumer. Meanwhile, it will charge some monetary
rewards from the consumer for providing the data service,
from which it will extract a part of rewards in proportion as
its own commission to compensate for the cost of aggregating
raw data. Also, it will pay the selected sellers the remaining
rewards to compensate for their data collection costs. As the
broker, the platform might manipulate the payments to sellers.

Definition 3 (Unknown Seller, Sensing Quality, and Sensing
Time). The CDT system includes M unknown data sellers,
denoted by M= {1, 2, ...,M}. We let qti,l ∈ [0, 1] denote the
sensing quality of seller i (∈M) completing data collection at
PoI l (∈ L) in the t-th round. Each qti,l follows an unknown
distribution with an unknown expectation qi, and will be used
to learn the estimated sensing quality of seller i in the t-th
round, denoted by q̄ti . We thus say that seller i is unknown.
Here, we assume that the expected quality qi only depends
on seller i’s smart device. And, each seller i will collect data
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Fig. 2: The workflow of CDT in round t

from all L PoIs in each round t. The total sensing time that
the seller i contributes to the data collection in round t is τ t

i ,
where τ t

i ∈ [0, T ]. Here, τ t
i does not need to cover the entire

round. Its duration can be determined by the seller itself. The
longer the sensing time, the larger the size of data collected
by the seller will be. Let τi=(τ1

i , τ
2
i , · · · , τN

i ) be the sensing
time vector of seller i in all rounds, and τ t=(τ t

1, τ
t
2, · · · , τ t

M )

be the sensing time vector of M sellers in the t-th round.
Remark. In Def. 3, the expected quality qi is assumed to

be fixed, but the actual sensing quality qti,l might be affected
by some exogenous factors (e.g., personal willingness, sensing
context, daily routine, and etc.). Hence, the sensing quality qti,l
might deviate from the expected quality. As the example of
taking pictures in Sec. I, qi depends on the lens, pixel, software
and etc. of the camera embedded in its device, which is a fixed
value. But the distance and angle of taking picture will make
qti,l vary in different places even with the same device. That
is, for ∀ task l′̸=l, qti,l′ may not be equal to qti,l.

The commodities for sale in CDT are the services of data
aggregation and data collection from the platform and each
seller, respectively. Providing these services will incur some
costs for sellers and the platform. The data statistics will also
produce a certain economic valuation for the consumer. The
costs and valuation are defined as follows:

Definition 4 (Cost, and Valuation). Each seller i ∈M has
a cost for collecting data in round t, which can be seen
as a function about the sensing time τ t

i and learned quality
q̄ti , denoted as Ci(τ

t
i , q̄

t
i). Likewise, the platform will incur a

service cost for aggregating data, which is determined by the
data size and thus is positively correlated to the sensing time
of all sellers, denoted as CJ(τ t). The consumer can obtain a
valuation from the aggregated statistics, denoted as ϕ(τ t, q̄t),
which can be seen as a function of the sensing time τ t and
the overall mean quality q̄t. Note that q̄t is the average value
of all selected sellers’ learned qualities {q̄ti}Mi=1 in round t.

To encourage the consumer, platform, and sellers to partic-
ipate in CDT, an incentive mechanism is designed as follows:

Definition 5 (Incentive Mechanism, Unit Service Price, and
Incentive Strategy). In the CDT system, the consumer will
offer a monetary reward, which is no larger than the valuation
of received data statistics, to compensate for the service costs
of the platform and selected sellers. Since both of the data
collection and aggregation costs are related to the sensing time,
the reward will be divided in proportion to the sensing time
and be paid to the platform and sellers, respectively. Thus, in
each round t, the consumer determines a unit data service

price (i.e., the reward per sensing time for data collection
and aggregation), denoted as pJ,t∈[pJmin, p

J
max]. The platform

also determines a unit data collection service price for sellers,
denoted as pt ∈ [pmin, pmax]. Moreover, each selected seller
i will determine its sensing time τ t

i . After receiving the data
statistics, the consumer will pay the platform the reward which
equals to the unit data service price multiplied by the total
sensing time. Also, the platform will pay each seller the reward
which is the unit data collection service price multiplied by
its sensing time. Since the whole incentive mechanism mainly
depends on the unit service prices and sellers’ sensing time,
we call the triple ⟨pJ,t, pt, τ t⟩ the incentive strategy. Once the
incentive strategy is determined, all payments can be settled.

We illustrate the detailed workflow of CDT in Fig.2. First,
the consumer starts the data trading by publishing the data
collection job to the platform, which will be conducted round
by round until the given time is exhausted. Then, the platform
selects some unknown sellers with high sensing qualities.
Next, the consumer, the platform, and the selected sellers will
cooperatively determine an incentive strategy. Meanwhile, the
selected sellers go to collect data with their carried sensing
devices and return the results to the platform. After that, the
platform will aggregate the collected data, send the statistics
to the consumer, and update the qualities based on statistics.
Finally, the consumer will pay the rewards to the platform
and sellers according to the incentive mechanism. Here, we
list major notations in Table I for ease of reference.

Problems. There are two major challenges in the above
CDT system: the unknown seller selection problem and the
optimal incentive strategy problem. The first is how to select
a group of unknown sellers with the highest sensing qualities.
Actually, seller selection is an online learning and decision
process. The platform can repeatedly learn the knowledge
about sellers’ sensing qualities on one hand, generally called
exploration. On the other hand, it can also exploit the learnt
knowledge to select the sellers with the known largest sensing
qualities, generally called exploitation. We need to find the
best balance between the exploration and exploitation, so as
to maximize the total sensing quality as much as possible. The
second is how to determine an optimal incentive strategy. Note
that the consumer, the platform, and each seller can affect the
others’ profits and meanwhile maximize their own profits by
strategically manipulate their unit prices and sensing time (i.e.,
pJ,t, pt, τ t), respectively. There exists a game among the three
parties. We need to find an optimal equilibrium for this game,
so that each party can achieve its maximum profit.
B. Modeling and Formulation of Seller Selection

Selecting sellers with the largest sensing qualities under the
circumstance that their qualities are unknown a priori is a
critical issue in CDT. Since this is actually an online learning
and decision-making process, we model it as a Combinatorial
Multi-Armed Bandit (CMAB) problem. CMAB is a widely-
used reinforcement learning model for online decision-making
in uncertain environments [14]. It basically includes a slot
machine with multiple arms, each of which is associated with
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TABLE I: Description of major notations
Variable Description
l, i, t the indexes of PoI, seller and round, respectively
L, M the sets of PoIs and sellers, respectively
L, M the numbers of PoIs and sellers, respectively
T , N the duration of one round, and the number of total rounds
χt
i indicates whether seller i is selected in round t

K, St the number and set of selected sellers in round t
qti,l the quality of seller i collecting data at PoI l in round t

q̄ti , q̂
t
i the learned quality and UCB value of seller i in round t

q̄t the overall mean quality of all selected sellers in round t
nt
i the total learned times of seller i’s quality until round t

τ ti the sensing time of seller i in round t
pt, pJ,t the unit prices of data collection and service in round t
τ ti

∗ the strategy of seller i in round t
pt

∗, pJ,t∗ the strategies of platform and consumer in round t
Ci(·), ai, bi the cost function and parameters of seller i
CJ (·), θ, λ the cost function and parameters of platform
ϕ(·), ω the valuation function and parameter of consumer
Ψt

i(·) the profit function of seller i in round t
Ωt(·),Φt(·) the profit functions of platform and consumer in round t

a revenue drawn from an unknown distribution. A player will
pull some arms round by round according to a bandit policy,
so as to maximize the cumulative revenue. To the end, we can
define the modeling of unknown seller selection.

Definition 6 (Unknown Seller Selection Modeling). We
model the unknown seller selection as a K-armed CMAB
game, where the platform is treated as the player, each seller
in M is an arm, selecting a seller is equivalent to pulling the
corresponding arm, and each seller’s sensing quality is seen
as the revenue of pulling the related arm. In each round, the
platform selects K sellers by pulling K arms simultaneously.

After the modeling, selecting sellers with the largest qual-
ities becomes to determine an arm-pulling policy which can
maximize the total expected revenue, generally called bandit
policy. The bandit policy and revenue are defined as follows:

Definition 7 (Bandit Policy). A bandit policy χ is a se-
quence of arm-pulling decisions, which can be represented
as an indicator vector (χ1, · · · ,χt, · · · ,χN ), where χt =

(χt
1, χ

t
2, · · · , χt

M ) ∈ {0, 1}M and N is the total rounds. More-
over, χt

i =1 indicates that the seller i will be selected in the
t-th round, while χt

i=0 means that it will not be selected.

Definition 8 (Revenue). The total revenue refers to the total
sensing qualities of the sellers selected by a given bandit policy
χ, denoted by R(χ). Then, the total expected revenue is:

E[R(χ)]=
∑N

t=1

∑M
i=1

∑L
l=1q

t
i,lχ

t
i (1)

Now, the unknown seller selection can be formulated:

Maximize : E[R(χ)] (2)

Subject to :
∑M

i=1 χ
t
i = K, ∀t ∈ [1, N ] (3)

χt
i ∈ {0, 1}, ∀i ∈ M,∀t ∈ [1, N ] (4)

Here, Eqs. (3) and (4) indicate that K sellers are selected.
C. Modeling and Formulation of Incentive Strategy

In the CDT system, the consumer can manipulate the unit
service price pJ,t to dominate the rewards paid to the platform
and sellers. The platform can also manipulate the unit data

collection price pt to determine sellers’ incomes. Meanwhile,
sellers can affect the profits of the consumer and platform by
adjusting their own sensing time τ t, in turn. In order to derive
the optimal incentive strategy, denoted by ⟨pJ,t∗, pt∗, τ t∗⟩, we
model it as a three-stage Hierarchical Stackelberg (HS) game.
First, we define the profit for each participant:

Definition 9 (Seller’s Profit). The profit of each seller i is
the difference between the payment from the platform and its
data collection cost in each round t, which is defined:

Ψt
i(p

t, τ ti ) = ptτ tiχ
t
i − Ci(τ

t
i , q̄

t
i)χ

t
i. (5)

In Eq. (5), the first part is seller i’s reward, and the second
part is the data collection cost. The cost function Ci(τ

t
i , q̄

t
i) in

the second part is assumed to be a monotonically increasing,
differentiable and strictly convex function. In this paper, we
adopt a widely used quadratic cost function, like in [15]–[17]:

Ci(τ
t
i , q̄

t
i) = (aiτ

t
i
2
+ biτ

t
i )q̄

t
i , (6)

Ci(·) reflects seller i’s effort level (i.e., sensing time in this
paper and [15], [16], and participation level in [17]) on data
collection with ai>0, bi≥0. Note that Ci(·) increases with the
sensing time and the growth rate of Ci(·) also increases with
the sensing time, which can be used to model the increasing
marginal cost for every additional unit of effort exerted. q̄ti ∈
[0, 1] is seller i’s estimated quality currently.

Definition 10 (Profit of Platform). The profit of platform is
the reward minus the data collection and aggregation costs:

Ωt(pJ,t, pt, τ t)=pJ,t
∑M

i=1τ
t
iχ

t
i−pt

∑M
i=1 τ

t
iχ

t
i−CJ(τ t). (7)

Here, the first part is the total rewards from consumer, the
second part is the total payments to sellers, and the third part is
the data aggregation cost. Similarly, we also adopt a quadratic
function to model the aggregation cost CJ(τ t):

CJ(τ t) = θ
(∑M

i=1 τ
t
iχ

t
i

)2
+ λ

∑M
i=1 τ

t
iχ

t
i, (8)

where θ>0, λ≥0 are pre-defined parameters.

Definition 11 (Consumer’s Profit). The consumer’s profit is
the difference between the valuation of received data statistics
and the rewards paid to the platform and sellers:

Φt(pJ,t, τ t) = ϕ(τ t, q̄t)−pJ,t
∑M

i=1 τ
t
iχ

t
i. (9)

In Eq. (9), the first part is the valuation produced by data statis-
tics, and the second part is the total payments. The valuation
function ϕ(τ t, q̄t) is assumed to be a monotonically increasing,
differentiable and strictly concave function of τ t=(τ t

i )∀i∈M.
We adopt a similar valuation function as in [16], [18]–[21]:

ϕ(τ t, q̄t) = ω · ln
(
1 + q̄t

∑M
i=1 τ

t
iχ

t
i

)
, (10)

where ω>1 is a system parameter and q̄t=
∑M

i=1 q̄tiχ
t
i∑M

i=1 χt
i

is the
mean of estimated sensing qualities of selected sellers in the
t-th round. Note that ϕ(·) increases with the sensing time but
the growth rate of ϕ(·) decreases with the sensing time, which
is known as the diminishing marginal return.

Then, we model the optimal incentive strategy as follows:
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Definition 12 (Incentive Strategy Modeling). Determining
the optimal incentive strategy ⟨pJ,t∗, pt∗, τ t∗⟩ is modeled as
a three-stage Hierarchical Stackelberg (HS) game, where the
consumer is the first tier leader, the platform is the second
tier leader, and sellers are the followers. Each of them tries to
maximize its own profit by determining an optimal parameter
in the incentive strategy which can be manipulated by itself
(called its optimal strategy hereafter, for simplicity), satisfying:

Stage 1 [Consumer’s Side]: pJ,t
∗
=argmaxpJ,tΦt(pJ,t,τ t) (11)

Stage 2 [Platform’s Side]: pt
∗
=argmaxptΩt(pJ,t, pt, τ t) (12)

Stage 3 [Seller i’s Side]: τ ti
∗
= argmaxτt

i
Ψt

i(p
t, τ ti ) (13)

In the above game, our objective is to find an optimal
incentive strategy ⟨pJ,t∗, pt∗, τ t∗⟩, by which each participant
can maximize its own profit. Meanwhile, the optimal solution
must satisfy the Stackelberg Equilibrium (SE), so that no one
is willing to adopt other strategies which will lead to a less
profit. The SE is defined as follows:

Definition 13. (Stackelberg Equilibrium, SE). An optimal
incentive strategy ⟨pJ,t∗, pt∗, τ t∗⟩ constitutes a SE iff the
following set of inequalities is satisfied:

Φt(pJ,t
∗
, τ t∗) ≥ Φt(pJ,t, τ t∗), (14)

Ωt(pJ,t
∗
, pt

∗
, τ t∗) ≥ Ωt(pJ,t

∗
, pt, τ t∗), (15)

Ψt
i(p

t∗, τ ti
∗
) ≥ Ψt

i(p
t∗, τ ti , τ

t
−i

∗
), (16)

where τ t
−i

∗ denotes the optimal strategies of all sellers except
the seller i. Therefore, all sellers’ optimal strategies can be
represented as τ t∗=τ t

−i
∗∪{τ t

i
∗}. Def. 13 shows that no one can

improve its own profit by deviating from the optimal strategy.

III. THE CMAB-HS DATA TRADING MECHANISM

In this section, we propose the CMAB-HS data trading
mechanism to solve the unknown seller selection problem
and determine the optimal incentive strategy. First, we extend
the traditional UCB mechanism from the multi-armed bandit
scenario of pulling single arm to solve our K-armed CMAB
problem. Next, we derive the optimal incentive strategy by
using the backward induction approach. In the following, we
first introduce the basic idea of CMAB-HS, and then present
the detailed algorithm, followed by an illustrative example to
show how our CMAB-HS mechanism works.

A. Unknown Seller Selection

An extended UCB-based bandit policy is designed to select
unknown sellers for our K-armed CMAB problem. The UCB
value of each seller is composed of the seller’s currently esti-
mated sensing quality and the corresponding confidence upper
bound. Since the UCB value takes account of the knowledge
learned from previous rounds (i.e., estimated sensing quality)
and the uncertainty (i.e., the confidence), it can balance the
exploration and exploitation well in online decision.

For an arbitrary t-th round, we estimate each seller’s quality
based on the knowledge learned from previous rounds. Let q̄ti
be seller i’s currently estimated quality and nt

i be the number

of times that seller i’s quality has been learned. Then, they
can be iteratively computed as the following formulations:

nt
i =

{
nt−1
i + L, χt

i = 1

nt−1
i , χt

i = 0
(17)

q̄ti =


q̄t−1
i nt−1

i +
∑

l∈L qti,l
nt−1
i +L

, χi,t = 1

q̄t−1
i , χi,t = 0

(18)

Here, in Eq. (17), L indicates that once a seller i is selected
in a round, its sensing quality would be learned L times. This
is because the seller collects data from all of the L PoIs. Each
qti,l in Eq. (18) is the corresponding sensing quality value.

Next, we compute the UCB value for each seller under the
K-armed CMAB scenario as follows:

q̂ti = q̄ti + εti, εti =

√
(K+1)·ln(

∑
j∈M nt

j)

nt
i

(19)

Here, q̄ti is seller i’s estimated quality value, and εti is the
corresponding confidence upper bound. The additive factor εti
takes the uncertainty of estimation into consideration, which
can make the less selected sellers before have more chances to
be selected in the current round. After all sellers’ UCB values
are calculated, we always select the K sellers with the largest
UCB values in each round. In the following section, we will
show that such a bandit policy can achieve the nearly optimal
online decision performance.

B. Determining the Optimal Incentive Strategy

To determine the optimal incentive strategy ⟨pJ,t∗, pt∗, τ t∗⟩,
we adopt the backward induction approach to derive the
solutions to Eqs. (11)-(13) in Def. 12. First, we investigate
the third Stage of game to derive each seller’s optimal strategy
(i.e., the sensing time τ t

i
∗) for any given unit data collection

service price pt (i.e., the strategy of platform). Next, we
consider the second Stage of game to determine the optimal
strategy of platform pt

∗ for any given unit service price pJ,t

(i.e., the consumer’s strategy). Finally, we back to the first
Stage of game to find the consumer’s optimal strategy, i.e.,
pJ,t

∗. The detailed deduction is presented as follows.

Theorem 14. In Stage 3, given any unit data collection service
price pt, each seller i’s optimal strategy i can be determined:

τ ti
∗
=

pt−q̄tibi
2q̄tiai

. (20)

Proof. By deriving the first-order and second-order derivatives
of each seller’s profit function Ψt

i(p
t, τ t

i ) in Eq. (5) with respect
to τ t

i , we can derive that ∂2Ψt
i(p

t,τt
i )

∂(τt
i )

2 =−2q̄tiai<0, which means
that Ψt

i(p
t, τ t

i ) is strictly concave in the feasible region of τ t
i .

We can obtain the unique optimal strategy of each seller i by
solving ∂Ψt

i(p
t,τt

i )

∂τt
i

=0.

Theorem 15. In Stage 2, based on sellers’ optimal strategies
determined in Stage 3, the platform can give its optimal
strategy pt

∗ for all selected sellers as follows:

pt
∗
= pJ,tA−(λA−2θBA+B)

2A(1+θA) , (21)

where A=
∑K

i=1
1

2q̄tiai
and B=

∑K
i=1

bi
2ai

.
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Fig. 3: The consumer’s profit function Φt(Υ)

Proof. By substituting Eq. (20) into the platform’s profit
function in Eq. (7) and deriving the first-order and second-
order derivatives of Ωt(pJ,t, pt, τ t) with respect to pt, we can
get ∂2Ωt(pJ,t,pt,τt)

∂(pt)2
=−2A−2θA2<0, where A=

∑K
i=1

1
2q̄tiai

. Hence,
Ωt(pJ,t, pt, τ t) is strictly concave in the feasible region of pt.
We can obtain the unique optimal strategy of platform by
solving ∂Ωt(pJ,t,pt,τt)

∂pt
=0.

Theorem 16. In Stage 1, the consumer’s optimal strategy is:

pJ,t
∗
=

3q̄tΛ+
√

(q̄tΛ−2)2+8Θω(q̄t)2−2

4q̄tΘ , (22)

where Θ= A
2(1+θA)

, Λ= λA−2θBA+B
2(1+θA)

+B, A=
∑K

i=1
1

2q̄tiai
, B=∑K

i=1
bi
2ai

. If pJ,t
∗
>pJmax, p

J,t∗=pJmax; pJ,t
∗
<pJmin, p

J,t∗=pJmin.

Proof. First, by substituting Eq. (20) into the consumer’s profit
function in Eq. (9), we can obtain the profit of the consumer:

Φt(pJ,t, τ t)=ω ln(1−q̄tB+pti q̄
tA)−pJ,t(ptiA−B). (23)

Then, by substituting Eq. (21) into Eq. (23), we can obtain:

Φt(pJ,t, τ t) = ω ln
(
1−q̄tB+pJ,tA−(λA−2θBA+B)

2A(1+θA) q̄tA
)

−pJ,t
(pJ,tA−(λA−2θBA+B)

2A(1+θA) A−B
)
. (24)

Let Θ= A
2(1+θA)

,Λ=(λA−2θBA+B)
2(1+θA)

+B. Eq. (24) is rewritten:

Φt(pJ,t, τ t)=ω ln(1+q̄tΘpJ,t−q̄tΛ)−Θ(pJ,t)2+ΛpJ,t. (25)

Let Υ=Λ−ΘpJ,t<0. We can observe that −Υ=
∑K

i=1 τ
t
i , i.e.,

the total sensing time contributed by selected sellers. Next, we
convert the optimal pJ,t∗ determination problem to optimal Υ∗

determination problem, which can maximize Φt(Υ).

Φt(Υ) = ω ln(1−q̄tΥ)+Υ(Λ−Υ)
Θ . (26)

We derive the first-order derivative of Ψt
i(Υ) as follows:

∂Φt(Υ)
∂Υ = −ωq̄t

1−q̄tΥ+ Λ−2Υ
Θ = (Λ−2Υ)(1−q̄tΥ)−ωq̄tΘ

Θ(1−q̄tΥ)

= 2q̄tΥ2−(q̄tΛ+2)Υ+(Λ−Θωq̄t)
Θ(1−q̄tΥ) . (27)

The consumer’s profit function Φt(Υ) is not standardly
concave. So, to find the optimal value of Υ which maximizes
Φt(Υ), we need to analyze the monotonicity of Φt(Υ). Let the
numerator term of Φt(Υ) be zero, i.e., 2q̄tΥ2−(q̄tΛ+2)Υ+(Λ−
Θωq̄t)=0. Then, we leverage the formula method to seek for
the roots of this quadratic formula as follows:

∆=(q̄tΛ + 2)2 − 8q̄t(Λ−Θωq̄t) > (q̄tΛ− 2)2 = 0.(28)

Since ∆>0, the numerator term has two roots. When Λ ≥
2/q̄t, the two roots can be computed:

Υ1=
(
q̄tΛ+2−

√
∆
)
/4q̄t<

(
q̄tΛ+2−(q̄tΛ−2)

)
/4q̄t=1/q̄t, (29)

Υ2=
(
q̄tΛ+2+

√
∆
)
/4q̄t>

(
q̄tΛ+2+(q̄tΛ−2)

)
/4q̄t≥1/q̄t.(30)

When Λ < 2/q̄t, the two roots can be computed:

Υ1=
(
q̄tΛ+2−

√
∆
)
/4q̄t<

(
q̄tΛ+2−(2−q̄tΛ)

)
/4q̄t<1/q̄t, (31)

Υ2=
(
q̄tΛ+2+

√
∆
)
/4q̄t>

(
q̄tΛ+2+(2−q̄tΛ)

)
/4q̄t=1/q̄t.(32)

Algorithm 1: The CMAB-HS Mechanism
Input: L,M, N,K, (K + 1),a, b, θ, λ, ω, υ,

[pJmin, p
J
max], [pmin, pmax], τ

0

Output: χ, (pJ∗
,p∗, τ ∗)

1 Initialize χt
i=0, pJ,t=0, pt=0, τ ti=0,∀i∈M, ∀t∈ [1, N ];

2 t=1, select all sellers in M in the first round:
3 foreach i∈M do τ ti

∗
=τ0, χt

i=1;
4 pt

∗
=pmax, p

J,t∗=argminpJ,t Ωt≥0;
5 foreach i∈M do Update nt

i, q̄
t
i , q̂

t
i ;

6 while t < N do
7 Sort the sellers M by UCB values: q̂ts1 ≥· · ·≥ q̂tsM ;
8 t = t+ 1;
9 Select the top K sellers: St={s1, s2, · · · , sK};

10 foreach si∈St do χt
si = 1;

11 Execute the HS game to determine the optimal
strategies according to Eqs. (22),(21),(20):
⟨pJ,t∗, pt∗, τ t∗⟩;

12 foreach i∈M do Update nt
si , q̄

t
si , q̂

t
si ;

13 return (χ, ⟨pJ∗
,p∗, τ∗⟩);

According to Eqs. (29)-(32), Υ1<1/q̄t<Υ2 always holds.
The positive and negative properties of the derivative func-
tion ∂Φt(Υ)

∂Υ
are same with (Υ−Υ1)(1/q̄

t−Υ)(Υ−Υ2). That
is, ∂Φt(Υ)

∂Υ
> 0, when Υ ∈ (−∞,Υ1)

∪
(1/q̄t,Υ2). Otherwise,

∂Φt(Υ)
∂Υ

<0 if Υ∈(Υ1, 1/q̄
t)
∪
(Υ2,+∞). Hence, the consumer’s

profit function Φt(Υ) monotonically increases in (−∞,Υ1),
decreases in (Υ1, 1/q̄

t), increases in (1/q̄t,Υ2), and decreases
in (Υ2,+∞), as illustrated in Fig. 3. Since Υ<0, the optimal
point of Φt(Υ) is Υ1. So, the consumer’s optimal strategy is

pJ,t
∗
=Λ−Υ1

Θ =3q̄tΛ+
√
∆−2

4q̄tΘ . (33)

Additionally, according to Def. 5, pJ,t∈[pJmin, p
J
max]. Then, if

pJ,t
∗
>pJmax, we can let pJ,t

∗
=pJmax; otherwise, if pJ,t

∗
<pJmin,

let pJ,t
∗
=pJmin.

According to Eq. (22), we can derive the consumer’s optimal
strategy pJ,t

∗. After that, we can determine the optimal strategy
pt

∗ for the platform by substituting pJ,t
∗ into Eq. (21). Next,

we can compute each seller’s optimal strategy τ t∗
i by substi-

tuting pt
∗ into Eq. (20). Then, the whole optimal incentive

strategy is determined, based on which the consumer can pay
the rewards to the platform and sellers.

C. The Detailed Algorithm

According to the above solution, the proposed CMAB-HS
mechanism is depicted in Algorithm 1. At the beginning, we
initialize all χt

i =0, pJ,t =0, pt =0, τ t
i =0 (Step 1). Then, the

initial exploration phase begins. We first tentatively select all
sellers to collect data in order to learn and estimate their
quality values (Steps 2-4). At the end of the first round, we
observe {qti,l|l∈L} for each selected seller i, and then update
nt=(nt

i)∀i∈M, q̄t=(q̄ti)∀i∈M, q̂t=(q̂ti)∀i∈M according to Eqs.
(17)-(19), respectively (Step 5).
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Fig. 4: System parameters and sellers’ information

Fig. 5: The actual qualities in different rounds

Fig. 6: The whole data trading process

After the initial exploration, we can use the learned quality
information to select sellers and determine the optimal strate-
gies of all participants (i.e., exploitation). In Steps 7-10, we
first sort the sellers in a non-increasing order of their UCB
values, and then greedily select the top-K sellers into the
selected sellers set St. Next, the CMAB-HS mechanism will
play the HS game among the consumer, the platform, and the
selected sellers in St to determine the optimal strategies for
them according to Eqs. (22), (21), and (20) (Step 11).

Besides, CMAB-HS will also update nt, q̄t, q̂t simultane-
ously based on the observed qualities in the same current
round (Step 12, i.e., exploration). The CMAB-HS mechanism
alternates the exploitation with the exploration in each of
the subsequent rounds t (t ∈ [2, N ]). So far, CMAB-HS
returns the seller selection result and the strategy profile
⟨pJ∗

=(pJ,t
∗
)
N

t=1,p
∗=(pt

∗
)
N

t=1, τ
∗=(τ t∗)

N

t=1⟩.

D. An Illustrative Example

For better understanding, we provide an example to illus-
trate the data trading process of CMAB-HS. There are three
sellers M={1, 2, 3} and four PoIs L={1, 2, 3, 4} in a 10-rounds
data trading, where K=2 sellers are selected to collect data
from the four locations in each round. The system parameters
and the expected qualities (which are unknown a priori) are
shown in Fig. 4. We assume that the observed quality of each
seller follows the Gaussian distribution in [0,1].

At the beginning, we do not have any information about
sellers’ qualities. Thus, according to Algorithm 1, all sellers
⟨1, 2, 3⟩ will be selected in the initial exploration phase to
learn the quality information. Each selected seller needs to
contribute one unit of time to collect data and is paid by the
highest price p1

∗
=5. The platform will be paid by a price

pJ,1
∗
=7.5 which can ensure its profit is non-negative. After the

initial round, the sample quality means for three sellers are cal-
culated according to Fig. 5: q̄11=(0.804+0.661+0.723+0.389)/4=
0.644, q̄12 = 0.654, q̄13 = 0.57. Accordingly, the UCB value for
each seller is calculated as: q̂11 =3.258, q̂12 =3.268, q̂13 =3.184.
So in round 2, sellers ⟨2, 1⟩ will be selected and the corre-
sponding strategies will be determined based on HS game, i.e.,

pJ,2
∗
=3.826, p2

∗
=0.794 and τ2

2
∗
=0.355, τ2

1
∗
=0.232. Then, the

sellers’ sample quality means and UCB values will be updated:
q̄21=0.597, q̄

2
2=0.698, q̄

2
3=0.57, and q̂21=1.657, q̂

2
2=1.758, q̂

2
3=2.069.

Then in the next round 3, sellers ⟨3, 2⟩ will be selected, and
their strategies are similarly determined. During the whole
data trading, sellers will be selected in the order of ⟨1, 2, 3⟩,
⟨2, 1⟩, ⟨3, 2⟩, ⟨1, 3⟩, ⟨2, 1⟩, ⟨3, 2⟩, ⟨2, 1⟩, ⟨3, 2⟩, ⟨1, 2⟩, ⟨3, 1⟩. We
illustrate the whole data trading process in Fig. 6.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the online performance of the
CMAB-HS mechanism and the Stackelberg equilibrium.

A. Online Performance Analysis

First, we analyze the regret performance, which is the
difference of total revenue achieved by the optimal policy and
our CMAB-HS mechanism [22]. In each round t, we use the
expected quality as the seller selection criteria, i.e., qi. Let S∗

and St be the selected sellers set in optimal solution (i.e., the
expected qualities of sellers are known in advance) and the
selected sellers set in CMAB-HS, respectively. We consider
that qs∗1 · · ·≥qs∗

K
≥· · ·≥qs∗

M
, so S∗={s∗1, s∗2 · · · , s∗K} is always

the optimal selected sellers set in each round. Here, ∗ denotes
the optimal policy. Hence, the regret can be defined:

Reg=
∑N

t=1 R(χ∗)−
∑N

t=1 E[R(χt)]. (34)

Then, we define the smallest and largest possible difference
of revenue among all non-optimal selected sellers sets St ̸=S∗:

△max=
∑

i∈S∗ qi −minSt ̸=S∗
∑

i∈St qi, (35)
△min=

∑
i∈S∗ qi −maxSt ̸=S∗

∑
i∈St qi. (36)

Let βt
i be the counter of seller i after the initial exploration

(i.e., t>1) . βt
i denotes the times that seller i’s quality has been

learned. So β1
i=L, ∀i∈M, and

∑
i∈M β1

i=ML. In each round
t (t>1), when St̸=S∗, the counter βt

i is updated as follows:

i = argminj∈St β
(t−1)
j , βt

i = β
(t−1)
i + L. (37)

That is, we find the smallest counter of all selected sellers
at the end of (t−1)-th round. If multiple sellers are satisfied
the condition, we randomly select any one. So the seller with
the smallest counter βt

i will be incremented by L. This means
that for ∀i∈M, the sum of the counter βt

i equals to the total
quality learning times. When any non-optimal sellers set is
determined in a round, there is exactly one seller’s counter to
be incremented. Next, we will focus on the upper bound of
the counter βN

i , where N is the total rounds of the CMAB-HS
mechanism. More specifically, we have the following lemma.

Lemma 17 (Chernoff-Hoeffding bound). [14] Suppose that
X1, X2, · · · , Xn are n random variables with common range
[0, 1], satisfying E [Xt|X1, · · · , Xt−1]=µ for ∀t∈ [1, n]. Let Sn=

X1+· · ·+Xn. Then ∀a≥0,

P [Sn≥nµ+a] ≤ e−2a2/n, P [Sn≤nµ−a] ≤ e−2a2/n. (38)

Lemma 18. The expected counter βN
i has an upper bound for

any seller i ∈ M in time rounds N , that is

E[βN
i ] ≤ 4K2(K+1) ln(NKL)

△2
min

+ 1 + π2

3K2K+1LK+2 . (39)
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Proof. In each round t, one of the following cases must
happen: 1) the optimal set of sellers, i.e., S∗, might be selected;
2) a non-optimal set will be selected, i.e., St ̸=S∗. In the first
case, the counter βt

i will not change, while in the second case,
the counter βt

i will be updated according to Eq. (37). Recall
that we use χt

i∈{0, 1} to denote the selection policy for seller
i in the t-th round. That is, χt

i represents the change of the
counter βt

i , where χt
i=1 means that βt

i is incremented, and
χt
i=0 otherwise. Based on this, we have the following results:

βN
i =L+L

∑N
t=2 χ{χt

i=1}≤ℓ+L
∑N

t=2 χ{χt
i=1, β

t
i≥ℓ} (40)

≤ℓ+L
∑N

t=2 χ
{∑

i∈St q̂
(t−1)
i ≥

∑
i∈S∗ q̂

(t−1)
i , βt

i≥ℓ
}

(41)

≤ℓ+L
∑N

t=2 χ
{
maxℓ≤nt

s1
≤···≤nt

sK
≤(t−1)L q̂

(t−1)
sj

≥ minL≤n∗
s1

≤···≤n∗
sK

≤(t−1)L q̂
(t−1)
s∗j

}
(42)

≤ℓ+
N∑
t=2

(t−1)L∑
nt
s1
=ℓ

· · ·
(t−1)L∑
nt
sK

=ℓ

(t−1)L∑
nt
s∗1
=L

· · ·
(t−1)L∑
nt
s∗
K
=L

χ
{ K∑

j=1

q̂tsj≥
K∑
j=1

q̂ts∗j

}
,(43)

where nt
i is the number of total times that seller i’s quality

has been learned at the end of t-th round. According to Eq.
(17), we have nt

i ≥ βt
i , for ∀i∈M, t∈ [1, N ]. Then, we focus

on the bound of
∑K

j=1 q̂
t
sj≥

∑K
j=1 q̂

t
s∗j

. According to Eq. (19):∑K
j=1 q̄

t
sj + εtsj ≥

∑K
j=1 q̄

t
s∗j

+ εts∗j . (44)

We can obtain that at least one of the following cases must
be true (which is based on the proof by contradiction):∑K

j=1 q̄
t
s∗j

≤
∑K

j=1 qs∗j − εts∗j , (45)∑K
j=1 q̄

t
sj ≥

∑K
j=1 qsj + εtsj , (46)∑K

j=1 qs∗j <
∑K

j=1 qsj + 2εtsj . (47)

Next, we need to prove the upper bound of the probability of
Eqs. (45) and (46). By applying the Chernoff-Hoeffding bound
in Lemma 17, we can get

P{
∑K

j=1 q̄
t
s∗j
≤
∑K

j=1 qs∗j −εts∗j }≤
∑K

j=1 P{q̄ts∗j ≤qs∗j −εts∗j }

≤
∑K

j=1 e
−2nt

s∗
j
εts∗

j

2

≤ K(tKL)−2(K+1). (48)

We can also similarly prove that

P{
K∑
j=1

q̄tsj ≥
K∑
j=1

qsj + εtsj}≤ K(tKL)−2(K+1). (49)

Note that, at the end of t-th round, the number of total times
that all sellers’ qualities have been learned is

∑
i∈M nt

i=tKL.
Then, we choose a certain value ℓ to make the Eq. (47)
impossible. Based on the fact that nt

i≥βt
i ≥ℓ, we have∑K

j=1 qs∗j −
∑K

j=1 qsj − 2
∑K

j=1 ε
t
sj

≥ △min − 2
∑K

j=1

√
(K+1) ln(tKL)

nt
sj

≥ △min − 2
∑K

j=1

√
(K+1) ln(tKL)

ℓ ≥ 0. (50)

After analyzing Eq. (50), we can yield that Eq. (50) always
holds if ℓ satisfies the following condition:

ℓ > 4K2(K+1) ln(NKL)
△2

min
. (51)

Now we continue Eq. (43), and get

E[βN
i ] ≤

⌈
4K2(K+1) ln(NKL)

△2
min

⌉
+
∑+∞

t=1 (tL−ℓ)K((t−1)L)K2K(tKL)−2(K+1)

≤ 4K2(K+1) ln(NKL)
△2

min
+1+ 2

K2K+1LK+2

∑+∞
t=1 t

−2

≤ 4K2(K+1) ln(NKL)
△2

min
+1+ π2

3K2K+1LK+2 . (52)

Hence, the lemma holds.

Theorem 19. The expected regret of the CMAB-HS mechanism
is bounded by O

(
MK3 ln(NKL)

)
.

Proof. According to the definition of regret in Eq. (34) and
Lemma 18, we have the following result:

Reg = NR(χ∗)− E[R(χ)] ≤
∑M

i=1 β
N
i △max

≤ M △max

(
4K2(K+1) ln(NKL)

△2
min

+1+ π2

3K2K+1LK+2

)
= O

(
MK3 ln(NKL)

)
. (53)

Therefore, the theorem holds.

B. The Stackelberg Equilibrium Analysis

Here, we prove that the existence and uniqueness of Stack-
elberg Equilibrium can be guaranteed in CMAB-HS.

Theorem 20. The optimal incentive strategy ⟨pJ,t∗, pt∗, τ t∗⟩
determined by the CMAB-HS mechanism constitutes the u-
nique Stackelberg Equilibrium.

Proof. In each round t, according to Theorem 16, the optimal
strategy pJ,t

∗ of the consumer can be uniquely obtained in two
cases: Case 1: pJ,t∗∈[pJmin, p

J
max]. After pJ,t∗ is ascertained, the

optimal strategy values pt
∗ and τ t∗

i of platform and each seller
i can be determined according to Eqs. (21) and (20). Since
pJ,t

∗ is only calculated based on the input values of sellers’
qualities q̄t, cost parameters a, b, θ, λ and valuation parameter
ω, the values of ⟨pJ,t∗, pt∗, τ t∗⟩ are only associated to the
constant inputs in round t. When the platform and sellers hold
the optimal strategies, the consumer’s profit Φt(pJ,t, τ t∗) only
changes with pJ,t. According to Theorem 16, the maximum
profit can be obtained only at pJ,t∗. Any other value of pJ,t ̸=
pJ,t

∗ can yield an inferior profit, so Eq. (14) holds. Similarly,
when fixing pJ,t

∗ and τ t∗, the platform’s optimal profit can
be obtained only at pt

∗; when fixing pJ,t
∗, pt

∗ and τ t∗
−i, the

profit of seller i is maximized at τ t∗
i . Thus, Eqs. (15) and (16)

hold. Case 2: pJ,t
∗
/∈ [pJmin, p

J
max]. Then pJ,t

∗
= {pJmin, p

J
max},

which is also the fixed value. We can similarly derive that
Eqs. (14)-(16) hold. Therefore, the theorem holds.

V. IMPLEMENTATION AND EVALUATIONS

In this section, we evaluate the performance of CMAB-HS
with extensive simulations on a real-world data trace.

A. Evaluation Methodology

Simulation Settings: We conduct extensive simulations on a
real data trace of Chicago Taxi Trips [23]. Each entry of the
trace records the taxiID, timestamp, trip miles and the location
of picking up/dropping off passengers, etc. We choose a data
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Fig. 8: ∆-Profit vs. rounds N and number of sellers M = 300
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Fig. 9: Regret vs. M and N=
105
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Fig. 10: ∆-Profit vs. number of sellers M and rounds N=105
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Fig. 11: Revenue and regret vs.
K and M = 300
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Fig. 12: Profit vs. number of selected sellers K and M = 300

set including 27465 taxi records. In our simulation, we select
some pick-up/drop-off points as the PoIs. And we assume that
the taxis which pick up or drop off passengers at these points
can complete the data collection job, which are regarded as
the data sellers. We first choose L=10 locations and find 300

taxis from the trace. Then, we choose M taxis as satisfied
sellers, where M is produced from [50, 300]. The number of
selected sellers K is selected from [10, 60]. The total rounds
N of online data collection job is set in [5×103, 2×105]. The
default values are M=300, K=10 and N=105. Since there
is no record about the qualities, we randomly generate the
expected quality from [0, 1] and then adopt truncated Gaussian
distribution to generate sellers’ observed qualities. Each seller
i’s cost is relied on its cost function parameters ai, bi, which are
set in [0.1, 0.5] and [0.1, 1], respectively. Similarly, we set the
cost function parameters of platform as θ∈[0.1, 1], λ∈[0.5, 2] and
the valuation function parameter of consumer as ω∈[600, 1400].
And we set θ=0.1, λ=1, ω=1000 by default.

Compared Algorithms: There are multiple simultaneous
optimization goals in our unknown online CDT scenario, while
most of the existing CDT systems realize one optimization,
which cannot be directly used to compare with our mech-
anism. Hence, we design three algorithms for comparison,
called “optimal”, “ϵ-first” [24], [25] and “random” [22], [25]–
[27]. “optimal” means that the algorithm knows the expected
qualities of all sellers in advance, and always selects the same
top-K sellers with the highest qualities in each round of the
data collection. “ϵ-first” will randomly select K sellers in

TABLE II: Simulation settings
Parameter name Values
number of rounds N 5, 40, 80, 100, 120, 160, 200 (×103)
number of sellers M 50, 100, 150, 200, 250, 300
number of selected sellers K 10, 20, 30, 40, 50, 60
valuation parameter ω 600, 800, 1000, 1200, 1400
cost parameter θ, λ [0.1, 1], [0.5, 2]
cost parameters a, b [0.1, 0.5], [0.1, 1]

each of the first ϵN rounds (i.e., pure exploration phase) and
greedily select the top-K sellers with the highest qualities in
each of the remaining (1− ϵ)N rounds, where we change ϵ

from 0.1 to 0.5. The random algorithm that does not know the
expected qualities will randomly select K sellers in all rounds.

B. Evaluation Results

For the evaluation criteria, we adopt four main metrics:
total revenue, regret, profit and strategy. Moreover, we use
PoC, PoP, PoS(s), SoC, SoP and SoS(s) to denote the Profit
of Consumer, Profit of Platform, Profit of selected Seller(s),
Strategy of Consumer, Strategy of Platform and Strategy of
selected Seller(s), respectively. For better comparison, we
also define some metrics to measure the difference of profit
between the optimal and each other algorithms in each round
on average, denoted by ∆-PoC, ∆-PoP and ∆-PoS(s).

1) Evaluation of CMAB-HS: First, when we change the
total rounds N from 5×103 to 2×105 under the circumstance
that numbers of sellers and selected sellers are M=300 and
K=10, we evaluate the achieved total revenue and regret in
Fig. 7, and ∆-PoC, ∆-PoP and ∆-PoS(s) in Fig. 8. In Fig. 7,
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Fig. 13: Profit and SE of CMAB-HS vs. pJ
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Fig. 15: Profit vs. a6 and ω = 1000
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Fig. 16: Strategy vs. a6 and ω = 1000
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Fig. 17: Profit vs. θ and ω = 1000
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Fig. 18: Strategy vs. θ and ω = 1000

we can observe that the total revenues of all four algorithms
increase with the increasing number of total rounds N , and the
two algorithms with quality learning (i.e., CMAB-HS and ϵ-
first) perform better than the random algorithm. The algorithms
whose exploitation phases take up more rounds will achieve
the near-optimal total revenues and low regrets, like in the
CMAB-HS and 0.1-first algorithms. In Fig. 8, ∆-PoC, ∆-PoP
and ∆-PoS(s) decrease and approach zero gradually as the
number of total rounds N increases, which means that the
estimation of quality is more accurate and the selection result
is similar to the optimal algorithm when the number of total
rounds N is large. Moreover, CMAB-HS performs better than
the other two compared algorithms.

Then, we change the number of sellers M from 50 to 300 to
evaluate the total revenue and regret in Fig. 9 and ∆-PoC, ∆-
PoP and ∆-PoS(s) in Fig. 10 when the numbers of sellers and
selected sellers are N=105,K=10. We can notice that the total
revenues and regrets of all algorithms keep stable and grow
very slightly as the number of sellers M increases, because
the total revenues and regrets are dominated by the seller
selection criteria and the selected K sellers. Since the CMAB-
HS and ϵ-first algorithms always select the top-K sellers in
the exploitation phase and the random algorithm always select
K sellers randomly, from the ever-changing candidate sellers
with various sizes, PoC, PoP and PoS(s) change slightly and
keep stable in general when their profits are derived under a
SE condition. Hence, ∆-PoC, ∆-PoP and ∆-PoS(s) are stable
in general except for some slight fluctuations caused by the

uncertainty of sensing quality when the number of sellers M

increases. In addition, the two algorithms with quality learning
perform better than the random algorithm. Specifically, the
CMAB-HS algorithm which executes quality learning more
times can obtain the near-optimal result.

Next, we let M=300, N =105 and change the number of
selected sellers K from 10 to 60 to evaluate the total revenue,
regret and average profit of each party achieved in each round
(i.e., average PoC, PoP and PoS(s)), as depicted in Figs. 11
and 12, respectively. In Fig. 11, the total revenues increase
along with the number of selected sellers K in all algorithms,
because each total revenue is accumulated based on the KN

selected sellers. Moreover, the total quality estimation error
becomes larger if the number of selected sellers K is large,
so that the regrets also increase with the increasing K. We
can notice that the regrets of algorithms with quality learning
have a relatively low growth rate, where CMAB-HS performs
better than other algorithms. In Figs. 12(a) and 12(b), average
PoC and PoP achieved by the algorithms with quality learning
in each round keep stable on the whole. However, larger K

results in more cost and more low-quality sellers to be selected.
Besides, more sellers selected in one round will reduce the
profit of each seller, so the average PoS(s) achieved in each
round decreases dramatically along with the increase of K in
Fig. 12(c). Overall, the performance of CMAB-HS approaches
to the optimal algorithm and is better than other compared
algorithms in Fig. 12. Taking the regret and profit together
into consideration, smaller K with larger N obtains a better
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comprehensive performance.

2) Evaluation of HS: The Hierarchical Stackelberg (HS)
game is played by the consumer, the platform and the selected
sellers in each round to determine their strategies. Since
the decision-making process is similar in every round, we
randomly select one round to evaluate the profit and strategy
of individual participant. Notice that we set K=10.

First, we evaluate PoC under different consumer’s data
valuation parameter ω when we increase the value of SoC
(i.e., pJ ) in Fig. 13(a). We can see that each PoC will find
a maximum point (i.e., SE point of HS) when pJ increases
from 0 to 40, and the larger ω will harvest the larger PoC and
SoC. Then, we set ω=1000 to observe the detailed change of
PoC, PoP and PoS(s) of sellers 3, 6, 8, where we use PoS-i to
denote seller i’s PoS. As illustrated in Fig. 13(b), PoC will
find a maximum point (the SE point) but PoP and PoS(s) will
continually increase as pJ increases.

Then, we evaluate the affect of changed PoS on PoC, PoP
and PoS(s) if we fixed SoC and SoP as the optimal value.
Both of PoC and PoP will increase at first and decrease late in
Fig.14(a), which means that they can find their own maximum
point in theory, respectively, even though the optimal value of
SoS-6 is out of range. In our CMAB-HS mechanism, we aim
to maximize all participants’ profits simultaneously, i.e., SE.
However, the SE point may not be the absolutely maximum
value for each participant if only considering itself, but it is
the equilibrium to incentivize all participants to take part in
the data trading and obtain satisfied profits. On the other hand,
according to Eqs. (5) and (20), each PoS-i is only influenced
by its quality and all sellers’ cost parameters (i.e., a, b) and
data collection price (i.e., p), so that only PoS-6 will vary with
the change of SoS-6 but PoS-3 and PoS-8 will not change.

Moreover, we change the cost parameter a6 of seller 6 to
evaluate its affect on profit and strategy. It should be noticed
that the larger cost of seller 6 is caused by the larger a6,
according to Eq. (6). As illustrated in Fig. 15, PoC, PoP and
PoS-6 decline sharply from a6=0 to 1, and level off gradually
with the increasing a6. Contrary to PoS-6, PoS-3 and PoS-8
will increase from a6=0 to 1 and later flatten. Accordingly in
Fig. 16(a), we can see that SoC and SoP mark a complete
reversal of the profit trend, because the consumer and the
platform need to raise prices (i.e., pJ and p) when seller 6’s
cost increases. But the changing trend of SoS(s) is same with
PoS(s), for the reason that the profit of each seller is positively
correlated to its sensing time τi, as illustrated in Fig. 16(b).

Finally, we evaluate the profit and strategy when the cost
parameter θ of platform varies. In Fig. 17, PoC, PoP and
PoS(s) first decrease significantly and approach to a flat later,
due to the incremental cost of platform with the increasing θ. It
is also why the consumer needs to provide higher price pJ for
the platform, and the platform will reduce price p for sellers
to guarantee profit, as shown in Fig. 18(a). Since the data
collection price p is lowered, each seller will reduce sensing
time to maximize profit accordingly in Fig. 18(b).

VI. RELATED WORKS

Many researchers work on designing data trading mecha-
nisms to monetize the large-scale valuable data recently, which
place emphases on data management [28], data acquisition
[29], [30], data trading [31], [32], etc. On one hand, data is
either already existed in these works or shared by previous
data owners, which cannot handle the problem of data source
scarcity, i.e., the data consumers cannot find any data meeting
its customized demands (e.g., the dynamic spatio-temporal
data). On the other hand, most mechanisms do not consider
the incentive issues, which will wear down the willingness of
data owners to share data. Although [31], [32] pay incentive re-
wards to participants by contributing weight for query results,
they cannot prevent the strategic participants from sacrificing
system utility for their own profits. Hence, we focus on the
customized data trading and incentive mechanism design, and
review the related works in the following two aspects.

Incentive mechanism: Incentive mechanisms have been
widely used to realize different optimization objectives. For
example, [9] designs a reverse auction-based quality-aware
incentive framework to incentivize seller’s participation and
realize social welfare maximization. [4] designs two privacy-
preserving auction-based incentive mechanisms for seller se-
lection to achieve social cost minimization. [10] proposes the
reverse auction-based incentive mechanism to select reliable
sellers, which can minimize the platform’s total payment.
However, all of these works focus on single goal optimization,
which cannot be applied to our scenario. Some researches are
devoted to the multiple goals optimization [16]–[21], which
play two-stage non-cooperative stackelberg games between
two parties to realize profit maximization of each party si-
multaneously, while [15] plays the cooperative game to derive
Walrasian Equilibrium in data trading. Moreover, [15]–[17]
use the similar quadratic function to denote cost and [16],
[19]–[21] use the Piece-wise linear functions. For valuation
function, [15] adopts the CobbDouglas production function
and [16], [18]–[21] leverage the log functions, all of which are
diminishing marginal valuation functions. Even though these
works realize multiple optimizations, they do not suit for our
three party game with unknown quality issues in data trading.

CMAB mechanism: Lots of researches focus on CMAB
problem [25]–[27], [33], [34]. For instance, [25] extends the
UCB strategy to solve the CMAB problem for online unknown
worker recruitment with O(NLK3 lnB) regret. [33] proposes
a CUCB algorithm that achieves O(lnn) regret for general
CMAB problems. [34] also designs a UCB-based unknown
worker selection algorithm with dynamic budget allocation.
However, these CMAB researches focusing on arm-pulling
policy (e.g., worker selection) cannot tackle the incentive
issues in our data trading scenario, while only a few works
consider the incentive issues [35]–[37]. In [35], the authors
designs a no-regret posted price mechanism, BP-UCB, which
is budget feasible and truthful. [36] proposes an auction and
CMAB combined mechanism (MAB-MDR) to incentivize
strategic users and obtain a sublinear O(T

2
3 ). [37] utilizes the
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UCB-based approach to allocate reward and recruits workers
under the reward constraint. But these CMAB mechanisms
cannot be directly applied to our problem as they fail to
maximize three parties’ profits simultaneously. So we combine
CMAB with HS to design a data trading mechanism which is
effective in the scenario of three parties.

VII. CONCLUSION

In this paper, we focus on the problems of seller selection
and incentive strategy design in practical CDT systems where
the sensing qualities of sellers are unknown. We model the
seller selection as a K-armed combinatorial multi-armed ban-
dit problem and adopt hierarchical Stackelberg game to stimu-
late participation. We propose a data trading mechanism, called
CMAB-HS, which selects sellers and determines strategies
iteratively in each trading round based on the extended UCB-
value. Through rigorous analysis and extensive simulations, we
prove that the CMAB-HS mechanism can achieve Stackelberg
Equilibrium and a tight bound on regret.
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